
May 2023

Case Study

D2X TRANSFORMATION
AT VIIZR

https://viizr.com

Though our collaboration with MuseLab, VIIZR
is delivering product faster and
more reliably while saving costs and
ensuring developers are spending
their time innovating, not triaging. The

impact of our engagement with MuseLab has far

exceeded our expectations.

— Andrew Albert, CTO, VIIZR

VIIZR saved over $130,000 in staff time in just 13 weeks
from improved release operations efficiency and catching bugs earlier in
the development cycle. That’s an estimated one-year ROI of 480%,
which will continue to compound over time.

MuseLab’s D2X Transformation service is a 6-month consulting
engagement focused on discovery, strategy, and coaching an ISVs
existing team to improve its development-to-delivery experience
(D2X). With MuseLab’s guidance, VIIZR optimized its D2X to detect and
remediate bugs before they turn into issues, increased the quantity
and quality of automated testing, and began shipping faster and more
confidently.

VIIZR shifted from the Package Development Model to the
Product Delivery Model. Instead of seeing its Salesforce product as
“just a package,” VIIZR began to take a broader perspective focused on
the complete product experience, from development all the way through
packaging, testing, and delivery. The VIIZR team is now able to fully test
and deploy its Salesforce product at every stage of its D2X lifecycle,
resulting in significant cost savings and increased efficiency.

The next stage of VIIZR’s D2X journey will deliver further returns
on its investment by extending its automation recipes through the
sales and delivery phases of the product lifecycle. With modularized,
automated demo configurations, VIIZR will be able to sell faster while
starting new customers off with custom tailored experiences that reduce
implementation cost and increase product profitability.

As VIIZR’s business grows, its D2X investment will scale
with its growing engineering, go to market, and customer success teams;
a growing customer base; and a growing partner network. All of these
stakeholders depend on easily available, reliable, and up-to-date product
experiences, and D2X helps VIIZR deliver.

Executive Summary
Adopt an improved CI process
with end to end tests of complete
packaged builds on every commit
by using CumulusCI to automate
scratch org creation

Shift Left by moving QE out
of persistent QA orgs and into
scratch orgs created from feature
branches before they are merged.

Automate release operations by
building fully tested, releasable
2GP beta packages after each
feature branch is merged

We guided VIIZR through three
phases of work:

$520k/year
Engineering savings from shifting testing
left and catching bugs earlier

$64k/year
Release operations savings by fully
automating release creation and delivery

480% 1-year ROI
VIIZR’s investment in MuseLab’s services
paid for itself in less than a quarter,
and VIIZR is on track to realize a return
on investment that will continue to
compound over time.

1

2

3

https://muselab.com/services

Built on the Salesforce Platform, VIIZR’s vision is to be the single productivity platform for the Trades
powered by Ford Pro, including telematics, GPS tracking, and in-vehicle experiences. It’s an exciting,
ambitious vision of software that powers the transformation of an industry.

VIIZR is a cloud field service management platform for highly-skilled trade workers like builders,

HVAC technicians, plumbers, and electrical contractors, founded in 2022 by Ford Motor Company and

Salesforce. VIIZR users can:

What is VIIZR

Powered by Ford Pro™ Built on Salesforce

Stay on track with digitized quotes, work orders, invoicing, and job management.

Connect with customers through an all-in-one customer profile, making it easy to communicate

and provide a better customer experience.

Stream line operations with capabilities for scheduling, dispatching, and coordination of field

technicians, improving productivity and efficiency.

https://www.viizr.com/
https://viizr.com

Like many new Salesforce ISVs and OEMs, VIIZR built the initial versions of its software with CodeScience.
In the spring of 2022, VIIZR began the process of building its own in-house team, and were heading
towards a September date for General Availability of its first release. VIIZR’s leadership knew they needed
to invest in their development-to-delivery process to fully realize its product vision.

When it began building out its in-house product development team to pick up the reins from CodeScience,
an expert tier Salesforce product development outsourcer (PDO), VIIZR was developing, testing, and
releasing like most Salesforce ISVs: from a set of persistent Salesforce Developer Edition and TSO
orgs. This is the Package Development Model, and it is widely taught and understood in the Salesforce
ecosystem as “best practice” for ISV development. VIIZR’s constellation of orgs included:

Before: The Package Development Model

I’ve had the pleasure of advising ISVs on the Salesforce Platform for the past 15 years.
The Platform provides a complete, comprehensive set of developer services but it
does require ISVs to implement those services in order to take full advantage. Knowing

VIIZR was developing its initial product on the Platform, I knew how critical
establishing the engineering foundations was going to
be to VIIZR’s success — not just in the long term but also in the short term.

— Andrew Albert, VIIZR CTO

Integration: run unmanaged package source from the integration branch of its GitHub repository

QA: run unmanaged, non-namespaced code from QA branch.

UAT: production release managed package versions

TSO (Trialforce Source Org): production release managed package versions, used for spawning
trial orgs for prospective customers

https://trailhead.salesforce.com/content/learn/modules/sfdx_dev_model

VIIZR Package Development Model Workflow

VIIZR developers created new features in scratch orgs and checked code into feature branches.
CircleCI ran a set of basic checks on each feature branch commit:
•	 Static code analysis via PMD
•	 Jest tests for Lightning Web Components
•	 Packageability scan to find things that can’t be packaged
•	 Validate-only deployment against the persistent integration org with Apex tests, but no

integration or browser testing

When ready for QA review, developers would merge to the integration branch, then to the QA
branch, which would be automatically deployed to the QA org by CircleCI

After limited QA testing on unmanaged metadata in the persistent QA org, code was merged to
the UAT branch and a package version was created for testing in the persistent UAT org before
promotion to the TSO for customer distribution

Packaging and releasing were done manually via a shell script by a senior developer with no
centralized audit trail

DEV
Scratch Org
Unmanaged

QA
Persistent Org

Unmanaged

UAT
Persistent Org

Packaged

TSO
Persistent Org

Packaged

INT
Persistent Org

Unmanaged

feature 1

feature 2
integration

Validate Only
Deploy

DEV
Scratch Org
Unmanaged

QA UAT master

There’s plenty going right here already:

Diagnosis

Version control for package source and some unpackaged config

Scripts for creating a release that can be run manually by someone handling release operations

A solid foundation of static code analysis and Jest tests

Validate-only deployment on every feature branch

An extensive internal checklist for new org setup

Despite these good practices, VIIZR was also experiencing numerous sources of friction with its process. As we dug
in with the team, we helped them uncover many opportunities to remove that friction. VIIZR’s development, build,
and delivery processes became more automated, more efficient, more reliable, and more effective.

39 days from commit to testing in a package
Weeks would elapse from the time a developer made
changes until they could be fully tested as a package.
With no clear schedule for package creation, this
happened irregularly and unpredictably.

Minimal testing in feature branches
Feature branches received only static analysis checks,
Jest tests and basic Apex tests. There were no
integration tests and no browser tests. Bugs were usually
found after a product version had been cut and deployed
to the UAT environment. Finding bugs later means more
interruptions and context switching.

Wasted effort on manual org config
VIIZR had a long post-install checklist to take an org
from what was in version control to a fully usable
product experience that could be tested, demoed, or
implemented. The manual work for provisioning new
orgs was handled by engineers.

State drift between persistent orgs
VIIZR was seeing state drift between their persistent
orgs causing the same code to behave differently in
different orgs. These issues often turned out to have
“simple” but very obscure and hard to troubleshoot root
causes, wasting time and causing ad-hoc interruptions
across the product team.

Release operations were manual and resource
intensive — and thus infrequent
Every step in the release process required a senior engineer
to manually run and monitor the process. This was yet
another disincentive for making the frequent small releases
which help exercise the team’s “release muscle” and turn
releasing into a routine, high-confidence, low-risk event.

Hidden tech debt
VIIZR’s org setup checklist also experienced state drift
because it had to be manually updated to keep in sync with
a rapidly changing product. Also, architectural decisions
about integration with the Partner Business Org (PBO)
restricted VIIZR’s ability to full test in scratch orgs. The use
of persistent orgs hid this tech debt from the VIIZR team.

Persistent test environments prevented use of
beta packages
Once a beta package is installed into an org, it cannot be
upgraded. Because most testing was only possible in the
persistent UAT org, it was impossible for VIIZR to use beta
packages for testing. Like many ISVs, VIIZR had to cut a
production release in order to be able to run regression
tests creating additional risk since production releases
have the potential to lock in some packaged metadata
due to manageability rules. It also limited VIIZR’s team to
testing one line of development at a time, even though they
were using second generation packaging.

Here are some of the challenges VIIZR faced:

VIIZR was following developer workflow practices that are commonly
understood to be best practices in the Salesforce community. However, many
of these “best” practices are in fact extremely inefficient, and cause frequent,
urgent interruptions to resolve problems that can and should be identified before
they hit an integration branch and become bugs.

The Integration Branch Dilemma

With multiple feature branches being merged into the integration branch before being
thoroughly tested, the QA team was testing multiple features in parallel. Bugs could be
found in some features but not others. Developers would then have to make the stressful
choice between trying to figure out how to selectively unmerge some branches, delaying
or canceling the entire release, or rushing to fix bugs so as not to block the release. As
a result, developers were getting pulled into urgent bug fixes, requiring an enormous
amount of effort on unplanned work on top of planned development work.

We worked intensively with VIIZR over a period of six
months to help them reimagine its Salesforce platform
development, testing, and release ops workflows
to take full advantage of the power of automation,
repeatability, scratch orgs, and beta releases.

Our first task was to help VIIZR reconceptualize its work
from “package development” to “product delivery.”

The Product Delivery Model defines a product as an
automation recipe in version control, used throughout
the product lifecycle, to deliver complete product
experiences to new or existing Salesforce orgs.

The Product Delivery Model solves the biggest pain
point of the Package Development Model, which is how
difficult it is to create a product experience that can be
tested, demoed, or delivered to a customer.
The locus of collaboration for your entire organization

How We Helped: Using D2X to Adopt the
Product Delivery Model

moves from a handful of persistent orgs to your version
control system. Delivery recipes are tested at every
step of the product lifecycle, helping you exercise your
release muscle and deliver more confidently and at
previously-unimaginable scale.

When the entire recipe to
deliver your product is in version
control, only then does version
control become the actual
source of truth for your product.

https://muselab.medium.com/the-release-subway-b6760b51419a#203c
https://muselab.medium.com/a-product-is-more-than-a-package-861fc73f9ea7

Development: We helped VIIZR move away from using bash shell scripts to create scratch orgs and begin
using CumulusCI and its branch-naming convention. This allowed developers to fully automate the process of
creating scratch orgs (goodbye manual config steps!) and adopt an improved CI process:

QE: We helped VIIZR begin the process of moving its QE process out of the persistent QA org and into scratch
orgs created from pre-merge feature branches. We provided training on CumulusCI to the QE team. As a new QE
director onboarded, he brought with him a strong focus on writing automated browser tests which are now run
via CumulusCI’s Robot Framework integration.

Create an unverified 2GP namespaced package per feature branch commit, which also tests packageability
of every commit on every feature branch. Set a Commit Status on the commit with the PackageVersionId so
anyone with repository access could access the packaged version of the commit.

Run Apex tests against a new scratch org using the 2GP namespaced package version instead of unmanaged
metadata.

Run automated browser tests against a new scratch org using the 2GP namespaced package version.

Configure developer scratch orgs to expire in 7 days instead of 30, forcing more frequent integration of the
latest package source.

Delivering quality software at scale requires investing in

automated testing. Running automated testing at scale
requires the ability to automate the creation of
on-demand test environments. MuseLab helped us

understand CumulusCI and Robot Framework so we could create

an automated browser test suite and automatically spin up scratch

orgs where we could run our tests on each feature branch commit

in CircleCI. As a veteran of the Salesforce ISV QE space, I’ve
never seen anything close to the capabilities I have
available today for my team at VIIZR.

— Pat Meeker, Lead QE at VIIZR

Our next task was building team alignment and understanding around a new approach to environment
strategy: using disposable, fully automatically configured scratch orgs as much as possible in the development
lifecycle. These conversations can take time, but the alignment they build is the bedrock of successful change.

We then put together a detailed plan to automate delivery of a complete Salesforce product experience into scratch
orgs by examinging VIIZR’s code repository and post install checklist to better diagnose the sources of friction and
wasted effort. We then led the team through a three stage process, tackling development, QE, and release ops:

1

2

With our deep understanding of CumulusCI, we helped VIIZR extend CumulusCI to meet its specific
product needs, including:

add_standard_value_set_entries: An override of CumulusCI’s built-in task to work around a bug with setting
WorkOrderStatus value set entries.

create_package_version: An override of CumulusCI’s built-in task to implement support for unpackaged
metadata required during the 2GP build process.

ensure_collaboration_groups: A new CumulusCI task that ensures the CollaborationGroup records required by
VIIZR’s product exist in an org.

github_commit_status: A custom CumulusCI task to set a GitHub commit status so we could implement
CumulusCI’s 2GP feature test workflow from CircleCI.

run_qaPBO_registration: Register a scratch org with VIIZR’s product’s proprietary provisioning interfaces.

setup_e2e_scratch_org: A custom provisioning task to enable certain user profiles needed for testing.

Release Ops: We helped VIIZR roll out a new release process that centers on the automatic creation of
releasable 2GP beta packages with every merge to the integration branch. These beta packages are run
through a full set of automated Apex and browser tests in scratch orgs, and as a result, it now takes a single
manual command to promote a beta package to production. As we write this, the VIIZR team is working on
automating package promotion and push upgrades through GitHub Actions so the entire release operations
process has a clear audit trail.

Diagnosing issues and customizing CumulusCI to automate

our product’s unique requirements would have
taken us weeks or months. With MuseLab’s

guidance, we were able to work through these challenges in

a few meetings and pair programming
sessions.

— Ben Dvorachek, Senior Salesforce Engineer

3

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_collaborationgroup.htm

Here’s VIIZR’s old package development workflow again, followed by its new product
delivery workflow.

Before D2X: VIIZR Package Development Workflow

After D2X: VIIZR Product Delivery Workflow

VIIZR now has a complete definition of its Salesforce product in version control.
Team members can now deploy the product at will to scratch orgs, with all

post-install configuration, at any stage in the development to delivery lifecycle.

DEV
Scratch Org
Unmanaged

QA
Persistent Org

Unmanaged

UAT
Persistent Org

Packaged

TSO
Persistent Org

Packaged

INT
Persistent Org

Unmanaged

feature 1

feature 2
integration

Validate Only
Deploy

DEV
Scratch Org
Unmanaged

QA UAT master

QA
Scratch Org

Packaged

DEV
Scratch Org
Unmanaged

feature/1

feature/2
integration

DEV
Scratch Org
Unmanaged

QA
Scratch Org

Packaged

QA
Scratch Org

Packaged

Self-Service
Scratch Org
On Demand

QA
Scratch Org

Packaged

QA
Scratch Org

Packaged

Promote &
Release Beta

UAT
Persistent Org

Packaged

TSO
Persistent Org

Packaged

Here’s a quick summary of what has changed for VIIZR as a result of this work.

Before D2X After D2X

Scratch org usage Development only Development through QA

Parallel testing threads
Can only test one release at a
time

Unlimited

Feature branch test coverage
Validate-only deploy + Apex
testing, tied to a single persistent
org

Full delivery into disposable scratch
orgs, namespaced packages, with
all post-install configuration for QA
and browser tests

Average time from commit to
package tests [1]

39 days
52 minutes to feature test version
14 hours to releasable beta version

Release operations time per
release

4-8 hours <1 hour, fully automated

Number of beta versions None After every PR merge

Who can update build config One devops person Everyone

Results & ROI

MuseLab’s help with unlocking the full power of CumulusCI

in our CI/CD process has made working on the VIIZR

app one of the smoothest dev to QA
processes I’ve been a part of. Having the

ability to address package level issues before the handoff

has been really awesome. It has unlocked a new
level of Salesforce development for us

and we are now within striking distance of true continuous

deployment for our production package.

— John Kuhl, Principal Software Engineer at VIIZR

Adopting improved D2X processes has brought VIIZR many benefits:

Cost savings from shifting bugs left: We estimate that in its first quarter of using these new systems, VIIZR
has saved $129k worth of developer time through early detection of bugs.[2]

Release operations cost savings: Just from the time saved in automating release creation versus the
prior manual process, VIIZR is saving an estimated $64k/year worth of lead developer time. [3] Thanks to
automation, VIIZR will not need to hire a Salesforce DevOps Engineer, avoiding a potential $200k+/year
expense as its team grows.

Improved team productivity: Fewer interruptions, more focus on planned work. Developers have more time
to work on delivering features, and are spending less time scrambling to deal with late-breaking bugs.

Team scalability: Testing in scratch orgs allows parallel threads of development and team scalability. This is
especially important for a growing team like VIIZR.

1

2

3

4

Between the cost savings from shifting bugs left and the efficiencies of automated release creation,

VIIZR’s investment in MuseLab’s services paid for itself in less than a quarter, and VIIZR is on track to

realize a 480% 1-year ROI that will continue to compound over time.

In addition to these hard cost savings, VIIZR is now automatically testing its software much more thoroughly. In
its first 13 weeks of use, VIIZR’s new test automation completed 3001 feature, validation, integration and 2GP

packaging test runs. Running these tests manually would have cost over $770k. [4] No team can afford to
test this intensively without D2X-style automation, and so many key tests simply weren’t happening before.

I’ve worked in the Salesforce ISV world for several years, and am

impressed with how MuseLab’s work with VIIZR has expanded what

we can accomplish in our CI/CD pipeline. Automating our delivery

pipeline has unlocked our ability to:

• Quickly and reliably spin up scratch orgs for development and

 testing

• Find and fix defects earlier in the pipeline

• Keep engineers focused on delivering customer value, without

 burning them out

Not only have we saved thousands of engineering hours, we’ve

operationalized team sustainability, customer value, and reasonable

workloads. I’m so proud of our team for having achieved this level

of maturity during such an early stage of our company. VIIZR’s

technical foundation is solid, and we’ll continue to see return on this

investment on for years to come.

— Cassidy Santaguida, Head of Engineering at VIIZR

D2X improvement is an ongoing journey, not a destination. VIIZR has made tremendous progress in a
very short period of time, and we are coaching them through even more improvements. The next stage is expanding
its D2X investment into solution engineering. Rather than building one-off demos, VIIZR can start creating real
solutions that serve as compelling, personalized demo experiences and can be delivered to customers as a starting
point for easier, more successful implementations.

We look forward to reporting back on VIIZR’s ongoing progress soon!

If you’ve read this far, something resonated. Let’s explore that together and chat about how MuseLab
can help your team join trailblazers like VIIZR in defining the next generation of ISV D2X best practices, pull together
your internal stakeholders and grab a time for a free, one-hour consultation with us.

https://muselab.com/lets-talk

We love Continuous Integration, but there’s another CI that’s also near and dear to us:
Continuous Improvement. We’re always looking for ways to improve our practice. Working with VIIZR has
helped us identify the following ways we can deliver even more value in future projects:

• Survey the team before and after to gather data about how they are experiencing process improvements.

• Define and track developer productivity metrics by first establishing a baseline, for example capturing actual time
 spent remediating late-breaking bugs before beginning shift-left work. This will help us more precisely quantify the
 cost savings from D2X.

• Establish a baseline and track how much of the automated and manual regression test suite can be completed
 against a scratch org created only from automation in version control.

What’s Next

Are You Ready for D2X Transformation?

Retro: How Will We Improve Next Time?

https://muselab.com/lets-talk

Notes
[1] How we calculated shift-left ROI: We analyzed the log files from VIIZR’s CircleCI server, looking at all of the build
failures logged over the first 13 weeks following setup of the new D2X environment. For each bug, we noted where
the new D2X automation found the bug, and assessed where it would have been found without these new workflows
(hint: in final testing of production builds). We eliminated cases where the new test automation software caught the
same build multiple times, and we also eliminated certain errors that are transient CircleCI or CumulusCI
configuration errors or other issues not caused by developer error. This resulted in a total of 238 bugs that were
found in either feature branch or beta tests. We estimate that finding a bug in a feature branch rather than in
production builds saves 8 hours of team time, and finding a bug in a beta build rather than in a production build saves
4 hours of team time, at an average cost of $100/hr.

[2] Test automation value computed based on the cost of developer hours that would be required to execute these
tests without automation.

[3] How we calculated release operations ROI: From June 2022 when packaging started to January 2023 when
automated beta version creation was implemented, 31 production release versions were created. Annualized, we
estimate VIIZR’s prior rate of production release version creation to be 53 releases per year. We estimate each
release took 8 hours of effort for a total of 425 hours per year saved. Releases were performed by a lead level
developer estimated at $150/hour.

[4] How we calculated average time from commit to testable package: We analyzed all repository commits and
calculated the amount of time that passed between the commit and the next testable package version using
GitHub commit data and the Package2Version objects in the DevHub. We averaged the time difference from before
automated unverified feature test package versions were created and automated releasable beta versions were
created and compared that to the average after those builds were implemented.

